
0.1 A developer’s guide to the Instrument class 1

0.1 A developer’s guide to the Instrument class

Since version 0.3.4, the Instrument class was reworked as shown in the following figure.

LazyObject
#calculate(): void
#performCalculations(): void

Instrument
+isExpired(): bool
#calculate(): void
#performCalculations(): void
#setupExpired(): void
+setupArguments(Arguments *): void

if (isExpired())
 setupExpired();
else
 LazyObject::calculate();

setupArguments(engine_->arguments());
engine_->arguments()->validate();
engine_->calculate();
// dynamic_cast needed in real code
NPV_ = engine_->results()->NPV;

PricingEngine
-arguments: Arguments *
-results: Results *
+calculate()

engine_

Old-style instrument
+isExpired(): bool
#performCalculations(): void
 ----- and possibly -----()
#setupExpired(): void

New-style instrument
+isExpired(): bool
+setupArguments(Arguments *): void
 ----- and possibly -----()
#setupExpired(): void
#performCalculations(): void

// override parent implementation
Instrument::performCalculations();
// additional behavior

Concrete engine
+calculate(): void

On the one hand, the checking of the expiration condition is now performed in a method is-
Expired() separated from the actual calculation, and a setupExpired() method is provided.
The latter sets the NPV to 0.0 and can be extended in derived classes should any other results be
returned.

On the other hand, the pricing-engine machinery previously contained in the Option class was
moved upwards to the Instrument class. Also, the setupEngine() method was replaced by a
setupArguments(Arguments∗) method. This allows one to cleanly implement containment of
instruments with code such as:

class FooArguments : public Arguments { ... };

class Foo : public Instrument {
public:
void setupArguments(Arguments*);
...

};

class FooOptionArguments : public FooArguments { ... };

class FooOption : public Option {
private:
Foo underlying_;

public:
void setupArguments(Arguments* args) {

underlying_.setupArguments(args);
// set the option-specific part

}
...

};

which was more difficult to write with setupEngine().

Therefore, there are now two ways to inherit from Instrument, namely:

1. implement the isExpired method, and completely override the performCalculations
method so that it bypasses the pricing-engine machinery. If the class declared any other
results beside NPV_ and errorEstimate_, the setupExpiredmethod should also be extended

Generated on Mon Sep 29 14:04:57 2003 for QuantLib by Doxygen

2

so that those results are set to a value suitable for an expired instrument. This was the
migration path taken for all instruments not previously deriving from the Option class.

2. define suitable argument and result classes for the instrument and implement the is-
Expired and setupArgumentsmethods, reusing the pricing-engine machinery provided by
the default performCalculations method. The latter can be extended by first calling
the default implementation and then performing any additional tasks required by the
instrument—most often, copying additional results from the pricing engine results to the
corresponding data members of the instrument. As in the previous case, the setupExpired
method can be extended to account for such extra data members.

Generated on Mon Sep 29 14:04:57 2003 for QuantLib by Doxygen

	A developer's guide to the Instrument class

