
§1 The SwapValuation example program INTRODUCTION 1

1. Introduction.
This example shows how to bootstrap a term structure on a number of market rates of different kinds and

how to price a simple swap.
Incidentally, it also shows how to use the QuantLib library in one’s own code.

2. Here is the general layout of the file swapvaluation.cpp which will be generated by this CWEB file.
The 〈 include QuantLib header 3 〉 and 〈using declarations for QuantLib classes 5 〉 sections are of particular
interest since they will be present in all programs using QuantLib.
〈 include QuantLib header 3 〉
〈 include other headers 4 〉
〈using declarations for QuantLib classes 5 〉
〈 typedef s 19 〉
〈 global variables 15 〉
〈 function declarations 6 〉
〈 function definitions 7 〉
〈main program 14 〉

3. In order to use QuantLib, the ql/quantlib.hpp header must be included. No other QuantLib headers
are necessary as all of them are made available through the latter.
〈 include QuantLib header 3 〉 ≡
#include <ql/quantlib.hpp>

This code is cited in section 2.

This code is used in section 2.

4. The only other header needed for this example is for output.
〈 include other headers 4 〉 ≡
#include <iostream>

This code is used in section 2.

5. using declarations can be used for easier access to QuantLib classes. A global declaration can be used
such as the one below, or individual class names can be imported.
〈using declarations for QuantLib classes 5 〉 ≡

using namespace QuantLib;
using QuantLib ::Instruments ::SimpleSwap;

See also sections 16, 27, 30, 32, 34, 36, 48, and 52.

This code is cited in section 2.

This code is used in section 2.

6. For the purpose of this example, we define a few helper functions whose definitions will be given later.
〈 function declarations 6 〉 ≡

void report (const SimpleSwap &);
Quote make quote (double value);
Helper make deposit helper (const Quote &, int length ,TimeUnit units);
Helper make fra helper (const Quote &, int start , int end);
Helper make futures helper (const Quote &, const Date &imm);
Helper make swap helper (const Quote &, int years);

This code is used in section 2.

2 INTRODUCTION The SwapValuation example program §7

7. 〈 function definitions 7 〉 ≡
〈define report 8 〉
〈define make quote 20 〉
〈define make deposit helper 29 〉
〈define make fra helper 31 〉
〈define make futures helper 33 〉
〈define make swap helper 35 〉

This code is used in section 2.

8. The function report prints swap results to standard output.
〈define report 8 〉 ≡

void report (const SimpleSwap &swap) {
〈print description 9 〉
〈print fixed rate 10 〉
〈print NPV 11 〉
〈print fair rate 12 〉
〈print fair spread 13 〉

}
This code is used in section 7.

9. The description of the swap was given upon construction and can be retrieved by means of the
Instrument ::description method.
〈print description 9 〉 ≡

std ::cout � swap .description () � ":" � std ::endl ;
This code is used in section 8.

10. Rates can be formatted by means of the RateFormatter class.
〈print fixed rate 10 〉 ≡

std ::cout � "\tFixed rate: " � RateFormatter ::toString (swap .fixedRate (), 2) � std ::endl ;
This code is used in section 8.

11. The same applies to amounts when the DoubleFormatter class is used.
〈print NPV 11 〉 ≡

std ::cout � "\tNPV: " � DoubleFormatter ::toString (swap .NPV(), 2) � std ::endl ;
This code is used in section 8.

12. 〈print fair rate 12 〉 ≡
std ::cout � "\tFair rate: " � RateFormatter ::toString (swap .fairRate (), 2) � std ::endl ;

This code is used in section 8.

13. 〈print fair spread 13 〉 ≡
std ::cout � "\tFair spread: " � RateFormatter ::toString (swap .fairSpread (), 2) � std ::endl ;

This code is used in section 8.

§14 The SwapValuation example program INTRODUCTION 3

14. Finally, the main program is a sequence of separate tasks which will be the object of the following
sections.
〈main program 14 〉 ≡

int main (int argc , char ∗argv [])
{

try {
〈 collect market data 17 〉
〈bootstrap term structures 37 〉
〈define and price swaps 50 〉
〈perturb the term structures 56 〉
〈 reprice the swaps 57 〉
return 0;

}
catch(std ::exception &e) {

std ::cout � e.what () � std ::endl ;
return 1;

}
catch(. . .) {

std ::cout � "unknown error" � std ::endl ;
return 1;

}
}

This code is used in section 2.

4 SETTING UP The SwapValuation example program §15

15. Setting up. A number of common parameters is used throughout this examples, namely, today’s
date, the calendar used for date calculations, a common number of settlement days which all instruments
in this example will share, and the used currency. For the purpose of this example, we store them as global
variables for ease of access.
〈 global variables 15 〉 ≡

Date todaysDate (6,November , 2001);
Calendar calendar = TARGET();
int settlementDays = 2;
Currency currency = EUR;

This code is used in section 2.

16. 〈using declarations for QuantLib classes 5 〉 +≡
using QuantLib ::Calendars ::TARGET;

17. The market data we are interested in are the current fixings of a number of deposit, FRA, and swap
rates as well as current future prices.

Such rates could be stored in a vector for making it easier to iterate over all the fixings. In this example,
they will be stored in separate variables for illustration purposes so that it will be possible to easily refer to
any of them by name.
〈 collect market data 17 〉 ≡
〈 collect deposit rates 21 〉
〈 collect FRA rates 22 〉
〈 collect futures prices 23 〉
〈 collect swap rates 24 〉

This code is used in section 14.

18. The MarketElement class is used to represent a quote which can vary over time. As we will see, it
is able to notify changes so that instruments which depend on its value can recalculate their values.

Also, MarketElement is an abstract base class which can be implemented in different ways. Its common
interface makes it possible to switch seamlessly between different implementations (databases and live data
feeds are among the possibilities which we can imagine). Here, a basic implementation is used called
SimpleMarketElement whose value can be changed manually. The following function and typedef
are provided to make it easier to build the desired structure.

19. 〈 typedef s 19 〉 ≡
typedef Handle〈MarketElement〉 Quote;

See also section 28.

This code is used in section 2.

20. 〈define make quote 20 〉 ≡
Quote make quote (double value) {

return Handle〈MarketElement〉(new SimpleMarketElement(value));
}

This code is used in section 7.

§21 The SwapValuation example program SETTING UP 5

21. 〈 collect deposit rates 21 〉 ≡
Quote d1w = make quote (0.0382);
Quote d1m = make quote (0.0372);
Quote d3m = make quote (0.0363);
Quote d6m = make quote (0.0353);
Quote d9m = make quote (0.0348);
Quote d1y = make quote (0.0345);

This code is used in section 17.

22. 〈 collect FRA rates 22 〉 ≡
Quote fra3x6 = make quote (0.037125);
Quote fra6x9 = make quote (0.037125);
Quote fra6x12 = make quote (0.037125);

This code is used in section 17.

23. 〈 collect futures prices 23 〉 ≡
Quote fut1 = make quote (96.2875);
Quote fut2 = make quote (96.7875);
Quote fut3 = make quote (96.9875);
Quote fut4 = make quote (96.6875);
Quote fut5 = make quote (96.4875);
Quote fut6 = make quote (96.3875);
Quote fut7 = make quote (96.2875);
Quote fut8 = make quote (96.0875);

This code is used in section 17.

24. 〈 collect swap rates 24 〉 ≡
Quote s2y = make quote (0.037125);
Quote s3y = make quote (0.0398);
Quote s5y = make quote (0.0443);
Quote s10y = make quote (0.05165);
Quote s15y = make quote (0.055175);

This code is used in section 17.

6 TERM STRUCTURE BOOTSTRAPPING The SwapValuation example program §25

25. Term structure bootstrapping. Term structures are bootstrapped on a number of given rates
so that the latter are reproduced when the corresponding instruments are priced on the former.

In particular, the PiecewiseFlatForward class is built adding constant instantaneous forward rate
intervals corresponding to the underlying instrument maturities. Namely, the first forward rate level is
chosen so that the instrument with the shortest maturity is correctly repriced. Then, the instrument with
the shortest maturity is chosen among the remaining and the second forward rate level is added. The process
is repeated until all instruments have been used.

In order for the process to be extensible, the repricing of the underlying instruments was not built into
the term structure itself. Instead, a base class RateHelper was created whose derived classes encapsulate
rate calculations for different instruments. A number of rate helpers is passed to the term structure to be
bootstrapped, which modifies itself until all rate helpers return the desired results.

26. Rate helpers are available for all rates and prices enumerated in the previous sections. For the purpose
of this example, a typedef and a number of simple functions were defined which make it easier to build the
corresponding structures.

27. 〈using declarations for QuantLib classes 5 〉 +≡
using QuantLib ::TermStructures ::RateHelper;

28. 〈 typedef s 19 〉 +≡
typedef Handle〈RateHelper〉 Helper;

29. Deposit rate helpers take a number of parameters which are described in the QuantLib documentation.
We will hard-wire in this function most of them, namely, the one which do not change between different
deposits, passing as arguments only the ones which change.
〈define make deposit helper 29 〉 ≡

Helper make deposit helper (const Quote &q, int length ,TimeUnit units) {
static DayCounter counter = Actual360();
static RollingConvention convention = ModifiedFollowing ;
return Handle〈RateHelper〉(new DepositRateHelper(RelinkableHandle〈MarketElement〉(q),

settlementDays , length , units , calendar , convention , counter));
}

This code is used in section 7.

30. 〈using declarations for QuantLib classes 5 〉 +≡
using QuantLib ::DayCounters ::Actual360;
using QuantLib ::TermStructures ::DepositRateHelper;

31. The same applies to FRA, futures, and swap rate helpers.
〈define make fra helper 31 〉 ≡

Helper make fra helper (const Quote &q, int start , int end) {
static DayCounter counter = Actual360();
static RollingConvention convention = ModifiedFollowing ;
return Handle〈RateHelper〉(new FraRateHelper(RelinkableHandle〈MarketElement〉(q),

settlementDays , start , end , calendar , convention , counter));
}

This code is used in section 7.

32. 〈using declarations for QuantLib classes 5 〉 +≡
using QuantLib ::TermStructures ::FraRateHelper;

§33 The SwapValuation example program TERM STRUCTURE BOOTSTRAPPING 7

33. 〈define make futures helper 33 〉 ≡
Helper make futures helper (const Quote &q, const Date &immDate) {

static DayCounter counter = Actual360();
static RollingConvention convention = ModifiedFollowing ;
static int length = 3;
return Handle〈RateHelper〉(new FuturesRateHelper(RelinkableHandle〈MarketElement〉(q),

immDate , settlementDays , length , calendar , convention , counter));
}

This code is used in section 7.

34. 〈using declarations for QuantLib classes 5 〉 +≡
using QuantLib ::TermStructures ::FuturesRateHelper;

35. 〈define make swap helper 35 〉 ≡
Helper make swap helper (const Quote &q, int years) {

static RollingConvention convention = ModifiedFollowing ;
static int fixedLegFrequency = 1;
static DayCounter counter = Thirty360(Thirty360 ::European);
static bool adjusted = false ;
static int floatingLegFrequency = 2;
return Handle〈RateHelper〉(new SwapRateHelper(RelinkableHandle〈MarketElement〉(q),

settlementDays , years , calendar , convention ,fixedLegFrequency , adjusted , counter ,
floatingLegFrequency));

}
This code is used in section 7.

36. 〈using declarations for QuantLib classes 5 〉 +≡
using QuantLib ::DayCounters ::Thirty360;
using QuantLib ::TermStructures ::SwapRateHelper;

37. Once we have the above machinery, we can easily create term structures by performing the actions
outlined below.
〈bootstrap term structures 37 〉 ≡
〈 create rate helpers 38 〉
〈 combine rate helpers 43 〉
〈 instantiate term structures 47 〉
〈 create common point of access to chosen term structure 49 〉

This code is used in section 14.

38. Rate helpers are created by using the appropriate helper functions.
〈 create rate helpers 38 〉 ≡
〈 create deposit rate helpers 39 〉
〈 create FRA rate helpers 40 〉
〈 create futures rate helpers 41 〉
〈 create swap rate helpers 42 〉

This code is used in section 37.

8 TERM STRUCTURE BOOTSTRAPPING The SwapValuation example program §39

39. 〈 create deposit rate helpers 39 〉 ≡
Helper d1w h = make deposit helper (d1w , 1,Weeks);
Helper d1m h = make deposit helper (d1m , 1,Months);
Helper d3m h = make deposit helper (d3m , 3,Months);
Helper d6m h = make deposit helper (d6m , 6,Months);
Helper d9m h = make deposit helper (d9m , 9,Months);
Helper d1y h = make deposit helper (d1y , 1,Years);

This code is used in section 38.

40. 〈 create FRA rate helpers 40 〉 ≡
Helper fra3x6 h = make fra helper (fra3x6 , 3, 6);
Helper fra6x9 h = make fra helper (fra6x9 , 6, 9);
Helper fra6x12 h = make fra helper (fra6x12 , 6, 12);

This code is used in section 38.

41. 〈 create futures rate helpers 41 〉 ≡
Helper fut1 h = make futures helper (fut1 ,Date(19,December , 2001));
Helper fut2 h = make futures helper (fut2 ,Date(20,March , 2002));
Helper fut3 h = make futures helper (fut3 ,Date(19, June , 2002));
Helper fut4 h = make futures helper (fut4 ,Date(18,September , 2002));
Helper fut5 h = make futures helper (fut5 ,Date(18,December , 2002));
Helper fut6 h = make futures helper (fut6 ,Date(19,March , 2003));
Helper fut7 h = make futures helper (fut7 ,Date(18, June , 2003));
Helper fut8 h = make futures helper (fut8 ,Date(17,September , 2003));

This code is used in section 38.

42. 〈 create swap rate helpers 42 〉 ≡
Helper s2y h = make swap helper (s2y , 2);
Helper s3y h = make swap helper (s3y , 3);
Helper s5y h = make swap helper (s5y , 5);
Helper s10y h = make swap helper (s10y , 10);
Helper s15y h = make swap helper (s15y , 15);

This code is used in section 38.

43. Once the rate helpers are created, they can be combined in different ways which will result in different
term structures being instantiated. It is not necessary to sort the instrument by maturity before passing
them to the term structure constructor; however, one must make sure that no two instruments have the
same maturity.

Here, we will create three different combinations.
〈 combine rate helpers 43 〉 ≡
〈 combine deposits and swaps 44 〉
〈 combine deposits, FRA and swaps 45 〉
〈 combine deposits, futures and swaps 46 〉

This code is used in section 37.

§44 The SwapValuation example program TERM STRUCTURE BOOTSTRAPPING 9

44. 〈 combine deposits and swaps 44 〉 ≡
std ::vector〈Helper〉 depoSwaps ;
depoSwaps .push back (d1w h);
depoSwaps .push back (d1m h);
depoSwaps .push back (d3m h);
depoSwaps .push back (d6m h);
depoSwaps .push back (d9m h);
depoSwaps .push back (d1y h);
depoSwaps .push back (s2y h);
depoSwaps .push back (s3y h);
depoSwaps .push back (s5y h);
depoSwaps .push back (s10y h);
depoSwaps .push back (s15y h);

This code is used in section 43.

45. 〈 combine deposits, FRA and swaps 45 〉 ≡
std ::vector〈Helper〉 depoFRASwaps ;
depoFRASwaps .push back (d1w h);
depoFRASwaps .push back (d1m h);
depoFRASwaps .push back (d3m h);
depoFRASwaps .push back (fra3x6 h);
depoFRASwaps .push back (fra6x9 h);
depoFRASwaps .push back (fra6x12 h);
depoFRASwaps .push back (s2y h);
depoFRASwaps .push back (s3y h);
depoFRASwaps .push back (s5y h);
depoFRASwaps .push back (s10y h);
depoFRASwaps .push back (s15y h);

This code is used in section 43.

46. 〈 combine deposits, futures and swaps 46 〉 ≡
std ::vector〈Helper〉 depoFutSwaps ;
depoFutSwaps .push back (d1w h);
depoFutSwaps .push back (d1m h);
depoFutSwaps .push back (fut1 h);
depoFutSwaps .push back (fut2 h);
depoFutSwaps .push back (fut3 h);
depoFutSwaps .push back (fut4 h);
depoFutSwaps .push back (fut5 h);
depoFutSwaps .push back (fut6 h);
depoFutSwaps .push back (fut7 h);
depoFutSwaps .push back (fut8 h);
depoFutSwaps .push back (s3y h);
depoFutSwaps .push back (s5y h);
depoFutSwaps .push back (s10y h);
depoFutSwaps .push back (s15y h);

This code is used in section 43.

10 TERM STRUCTURE BOOTSTRAPPING The SwapValuation example program §47

47. Now, term structures can be instantiated by passing the chosen instrument collection as well as a few
other parameters. Also, we wrap them into Handles so that they can be safely passed to instruments for
pricing.
〈 instantiate term structures 47 〉 ≡

DayCounter counter = Actual360();
Handle〈TermStructure〉 depoSwapTS (new PiecewiseFlatForward(currency , counter , todaysDate ,

calendar , settlementDays , depoSwaps));
Handle〈TermStructure〉 depoFRASwapTS (new PiecewiseFlatForward(currency , counter ,

todaysDate , calendar , settlementDays , depoFRASwaps));
Handle〈TermStructure〉 depoFutSwapTS (new PiecewiseFlatForward(currency , counter ,

todaysDate , calendar , settlementDays , depoFutSwaps));
This code is used in section 37.

48. 〈using declarations for QuantLib classes 5 〉 +≡
using QuantLib ::TermStructures ::PiecewiseFlatForward;

49. Finally, when it is one’s intention to switch among a number of term structures, it is necessary to
create a RelinkableHandle which will act as global point of access for the chosen term structure. Relinking
the handle to a different term structure will propagate the change to all its copies as detailed in the QuantLib
documentation.

For purpose of illustration, we will create two RelinkableHandles which will give a global link to the
term structure used for Euribor fixing and the one used for cash flow discounting, respectively.
〈 create common point of access to chosen term structure 49 〉 ≡

RelinkableHandle〈TermStructure〉 forecastTS , discountTS ;
This code is used in section 37.

§50 The SwapValuation example program SWAP PRICING 11

50. Swap pricing. Once we have a term structure, pricing a simple swap is as easy as instantiating it
and asking for its NPV. All that is needed is to instantiate the necessary parameters first.
〈define and price swaps 50 〉 ≡
〈define swap parameters 51 〉
〈 instantiate swaps 53 〉
〈 cycle term structures and output results 54 〉

This code is used in section 14.

51. 〈define swap parameters 51 〉 ≡
double nominal = 1000000;
int length = 5;
Rate fixedRate = 0.04;
bool payFixedRate = true ;
Date spot = calendar .advance (todaysDate , settlementDays ,Days);
Date oneYearHence = calendar .advance (spot , 1,Years);
int fixedLegFrequency = 1;
bool adjusted = false ;
RollingConvention convention = ModifiedFollowing ;
DayCounter swapCounter = Thirty360(Thirty360 ::European);
int floatingLegFrequency = 2;
Handle〈Xibor〉 index (new Euribor(6,Months , forecastTS));
int fixingDays = 2;
Spread spread = 0.0;

This code is used in section 50.

52. 〈using declarations for QuantLib classes 5 〉 +≡
using Indexes ::Xibor;
using Indexes ::Euribor;

53. 〈 instantiate swaps 53 〉 ≡
SimpleSwap spot5YearSwap(payFixedRate , spot , length ,Years , calendar , convention ,nominal ,

fixedLegFrequency ,fixedRate , adjusted , swapCounter ,floatingLegFrequency , index ,fixingDays , spread ,
discountTS , "", "5−year swap, spot");

SimpleSwap oneYearForward5YearSwap(payFixedRate , oneYearHence , length ,Years , calendar ,
convention ,nominal ,fixedLegFrequency ,fixedRate , adjusted , swapCounter ,floatingLegFrequency ,
index ,fixingDays , spread , discountTS , "", "5−year swap, 1 year forward");

This code is used in section 50.

12 SWAP PRICING The SwapValuation example program §54

54. Now the swaps can be priced on different term structures just by relinking forecastTS and discountTS
to the desired instances.
〈 cycle term structures and output results 54 〉 ≡

std ::cout � "*** using depo−swap term structure:" � std ::endl ;
forecastTS .linkTo(depoSwapTS);
discountTS .linkTo(depoSwapTS);
〈 output results 55 〉
std ::cout � "*** using depo−FRA−swap term structure:" � std ::endl ;
forecastTS .linkTo(depoFRASwapTS);
discountTS .linkTo(depoFRASwapTS);
〈 output results 55 〉
std ::cout � "*** using depo−futures−swap term structure:" � std ::endl ;
forecastTS .linkTo(depoFutSwapTS);
discountTS .linkTo(depoFutSwapTS);
〈 output results 55 〉

This code is used in sections 50 and 57.

55. The report function is used to output the results. Also, we verify that the 5-years spot swap is
correctly repriced.
〈 output results 55 〉 ≡

report (spot5YearSwap);
QL_REQUIRE(QL_FABS(spot5YearSwap .fairRate ()−s5y~value ()) < 1 · 10−8, "5 years swap mispriced!");
report (oneYearForward5YearSwap);

This code is used in section 54.

56. MarketElements have the ability of notifying changes in their value to their observers. Therefore,
we do not need to take any explicit action for the term structures to be bootstrapped again and the swaps
to be repriced. To demonstrate this, we simply change the value of the MarketElement corresponding
to the 5-years swap rate. The explicit downcasting from Quote to Handle〈SimpleMarketElement〉 is
necessary in order to access the interface of the latter.
〈perturb the term structures 56 〉 ≡

Handle〈SimpleMarketElement〉 fiveYearsRate = s5y ;
fiveYearsRate~setValue (0.0460);
std ::cout � "*** 5Y swap rate increased to 4.60%" � std ::endl ;

This code is used in section 14.

57. We now simply output again the results. As anticipated, the swaps will now report a different value.
〈 reprice the swaps 57 〉 ≡
〈 cycle term structures and output results 54 〉

This code is used in section 14.

§58 The SwapValuation example program COPYRIGHT AND LICENSE 13

58. Copyright and license.
Copyright (C) 2000, 2001, 2002 RiskMap srl
This file is part of QuantLib, a free-software/open-source library for financial quantitative analysts and

developers (http://quantlib.org/).
QuantLib is free software: you can redistribute it and/or modify it under the terms of the QuantLib

license. You should have received a copy of the license along with this program; if not, please email
ferdinando@ametrano.net. The license is also available online at http://quantlib.org/html/license.html.

This program is distributed in the hope that it will be useful, but without any warranty; without even
the implied warranty of merchantability or fitness for a particular purpose. See the license for more
details.

14 INDEX The SwapValuation example program §59

59. Index. Here is a list of the identifiers used, and where they appear. Underlined entries indicate the
place of definition. Error messages are also shown.

Actual360: 29, 30, 31, 33, 47.
adjusted : 35, 51, 53.
advance : 51.
argc : 14.
argv : 14.
Calendar: 15.
calendar : 15, 29, 31, 33, 35, 47, 51, 53.
Calendars: 16.
convention : 29, 31, 33, 35, 51, 53.
counter : 29, 31, 33, 35, 47.
cout : 9, 10, 11, 12, 13, 14, 54, 56.
Currency: 15.
currency : 15, 47.
Date: 6, 15, 33, 41, 51.
DayCounter: 29, 31, 33, 35, 47, 51.
DayCounters: 30, 36.
Days : 51.
December : 41.
depoFRASwaps : 45, 47.
depoFRASwapTS : 47, 54.
depoFutSwaps : 46, 47.
depoFutSwapTS : 47, 54.
DepositRateHelper: 29, 30.
depoSwaps : 44, 47.
depoSwapTS : 47, 54.
description : 9.
discountTS : 49, 53, 54.
DoubleFormatter: 11.
d1m : 21, 39.
d1m h : 39, 44, 45, 46.
d1w : 21, 39.
d1w h : 39, 44, 45, 46.
d1y : 21, 39.
d1y h : 39, 44.
d3m : 21, 39.
d3m h : 39, 44, 45.
d6m : 21, 39.
d6m h : 39, 44.
d9m : 21, 39.
d9m h : 39, 44.
e: 14.
end : 6, 31.
endl : 9, 10, 11, 12, 13, 14, 54, 56.
EUR: 15.
Euribor: 51, 52.
European : 35, 51.
exception: 14.
fairRate : 12, 55.
fairSpread : 13.
false : 35, 51.

fiveYearsRate : 56.
fixedLegFrequency : 35, 51, 53.
fixedRate : 10, 51, 53.
fixingDays : 51, 53.
floatingLegFrequency : 35, 51, 53.
forecastTS : 49, 51, 54.
FraRateHelper: 31, 32.
fra3x6 : 22, 40.
fra3x6 h : 40, 45.
fra6x12 : 22, 40.
fra6x12 h : 40, 45.
fra6x9 : 22, 40.
fra6x9 h : 40, 45.
FuturesRateHelper: 33, 34.
fut1 : 23, 41.
fut1 h : 41, 46.
fut2 : 23, 41.
fut2 h : 41, 46.
fut3 : 23, 41.
fut3 h : 41, 46.
fut4 : 23, 41.
fut4 h : 41, 46.
fut5 : 23, 41.
fut5 h : 41, 46.
fut6 : 23, 41.
fut6 h : 41, 46.
fut7 : 23, 41.
fut7 h : 41, 46.
fut8 : 23, 41.
fut8 h : 41, 46.
Handle: 19, 20, 28, 29, 31, 33, 35, 47, 51, 56.
Helper: 6, 28, 29, 31, 33, 35, 39, 40, 41, 42,

44, 45, 46.
imm : 6.
immDate : 33.
index : 51, 53.
Indexes: 52.
Instrument: 9.
Instruments: 5.
June : 41.
length : 6, 29, 33, 51, 53.
linkTo : 54.
main : 14.
make deposit helper : 6, 29, 39.
make fra helper : 6, 31, 40.
make futures helper : 6, 33, 41.
make quote : 6, 20, 21, 22, 23, 24.
make swap helper : 6, 35, 42.
March : 41.
MarketElement: 18, 19, 20, 29, 31, 33, 35, 56.

§59 The SwapValuation example program INDEX 15

ModifiedFollowing : 29, 31, 33, 35, 51.
Months : 39, 51.
nominal : 51, 53.
November : 15.
NPV: 11.
oneYearForward5YearSwap : 53, 55.
oneYearHence : 51, 53.
payFixedRate : 51, 53.
PiecewiseFlatForward: 25, 47, 48.
push back : 44, 45, 46.
q: 29, 31, 33, 35.
QL_FABS: 55.
QL_REQUIRE: 55.
QuantLib: 5, 16, 27, 30, 32, 34, 36, 48.
Quote: 6, 19, 20, 21, 22, 23, 24, 29, 31, 33, 35, 56.
Rate: 51.
RateFormatter: 10, 12, 13.
RateHelper: 25, 27, 28, 29, 31, 33, 35.
RelinkableHandle: 29, 31, 33, 35, 49.
report : 6, 8, 55.
RollingConvention: 29, 31, 33, 35, 51.
September : 41.
settlementDays : 15, 29, 31, 33, 35, 47, 51.
setValue : 56.
SimpleMarketElement: 18, 20, 56.
SimpleSwap: 5, 6, 8, 53.
spot : 51, 53.
spot5YearSwap : 53, 55.
Spread: 51.
spread : 51, 53.
start : 6, 31.
std: 9, 10, 11, 12, 13, 14, 44, 45, 46, 54, 56.
swap : 8, 9, 10, 11, 12, 13.
swapCounter : 51, 53.
SwapRateHelper: 35, 36.
s10y : 24, 42.
s10y h : 42, 44, 45, 46.
s15y : 24, 42.
s15y h : 42, 44, 45, 46.
s2y : 24, 42.
s2y h : 42, 44, 45.
s3y : 24, 42.
s3y h : 42, 44, 45, 46.
s5y : 24, 42, 55, 56.
s5y h : 42, 44, 45, 46.
TARGET: 15, 16.
TermStructure: 47, 49.
TermStructures: 27, 30, 32, 34, 36, 48.
Thirty360: 35, 36, 51.
TimeUnit: 6, 29.
todaysDate : 15, 47, 51.
toString : 10, 11, 12, 13.

true : 51.
units : 6, 29.
value : 6, 20, 55.
vector: 44, 45, 46.
Weeks : 39.
what : 14.
Xibor: 51, 52.
Years : 39, 51, 53.
years : 6, 35.

16 NAMES OF THE SECTIONS The SwapValuation example program

〈bootstrap term structures 37 〉 Used in section 14.

〈 collect FRA rates 22 〉 Used in section 17.

〈 collect deposit rates 21 〉 Used in section 17.

〈 collect futures prices 23 〉 Used in section 17.

〈 collect market data 17 〉 Used in section 14.

〈 collect swap rates 24 〉 Used in section 17.

〈 combine deposits and swaps 44 〉 Used in section 43.

〈 combine deposits, FRA and swaps 45 〉 Used in section 43.

〈 combine deposits, futures and swaps 46 〉 Used in section 43.

〈 combine rate helpers 43 〉 Used in section 37.

〈 create FRA rate helpers 40 〉 Used in section 38.

〈 create common point of access to chosen term structure 49 〉 Used in section 37.

〈 create deposit rate helpers 39 〉 Used in section 38.

〈 create futures rate helpers 41 〉 Used in section 38.

〈 create rate helpers 38 〉 Used in section 37.

〈 create swap rate helpers 42 〉 Used in section 38.

〈 cycle term structures and output results 54 〉 Used in sections 50 and 57.

〈define and price swaps 50 〉 Used in section 14.

〈define swap parameters 51 〉 Used in section 50.

〈define make deposit helper 29 〉 Used in section 7.

〈define make fra helper 31 〉 Used in section 7.

〈define make futures helper 33 〉 Used in section 7.

〈define make quote 20 〉 Used in section 7.

〈define make swap helper 35 〉 Used in section 7.

〈define report 8 〉 Used in section 7.

〈 function declarations 6 〉 Used in section 2.

〈 function definitions 7 〉 Used in section 2.

〈 global variables 15 〉 Used in section 2.

〈 include QuantLib header 3 〉 Cited in section 2. Used in section 2.

〈 include other headers 4 〉 Used in section 2.

〈 instantiate swaps 53 〉 Used in section 50.

〈 instantiate term structures 47 〉 Used in section 37.

〈main program 14 〉 Used in section 2.

〈 output results 55 〉 Used in section 54.

〈perturb the term structures 56 〉 Used in section 14.

〈print NPV 11 〉 Used in section 8.

〈print description 9 〉 Used in section 8.

〈print fair rate 12 〉 Used in section 8.

〈print fair spread 13 〉 Used in section 8.

〈print fixed rate 10 〉 Used in section 8.

〈 reprice the swaps 57 〉 Used in section 14.

〈 typedef s 19, 28 〉 Used in section 2.

〈using declarations for QuantLib classes 5, 16, 27, 30, 32, 34, 36, 48, 52 〉 Cited in section 2. Used in section 2.

The SwapValuation example program

Section Page
Introduction . 1 1
Setting up . 15 4
Term structure bootstrapping . 25 6
Swap pricing . 50 11
Copyright and license . 58 13
Index . 59 14

	Introduction
	Setting up
	Term structure bootstrapping
	Swap pricing
	Copyright and license
	Index
	Names of the sections
	bootstrap term structures
	collect FRA rates
	collect deposit rates
	collect futures prices
	collect market data
	collect swap rates
	combine deposits and swaps
	combine deposits, FRA and swaps
	combine deposits, futures and swaps
	combine rate helpers
	create FRA rate helpers
	create common point of access to chosen term structure
	create deposit rate helpers
	create futures rate helpers
	create rate helpers
	create swap rate helpers
	cycle term structures and output results
	define and price swaps
	define swap parameters
	define make_deposit_helper
	define make_fra_helper
	define make_futures_helper
	define make_quote
	define make_swap_helper
	define report
	function declarations
	function definitions
	global variables
	include QuantLib header
	include other headers
	instantiate swaps
	instantiate term structures
	main program
	output results
	perturb the term structures
	print NPV
	print description
	print fair rate
	print fair spread
	print fixed rate
	reprice the swaps
	typedefs
	using declarations for QuantLib classes

