re Libor models - skew parametrization

classic Classic list List threaded Threaded
2 messages Options
Reply | Threaded
Open this post in threaded view
|

re Libor models - skew parametrization

Mark joshi-2
Well, if you allow an arbitrary skew parametrization the SDEs are no
longer solvable even when the drift is zero.
All modelling is a compromise between tractability and realism,
displaced diffusion is just as tractable as log-normal and so is a
natural choice.

The volatilities in the model are to be interpreted as the
volatilities of the displaced log-rates. If all your displacements are
equal then there is no loss of time homogeneity. If they are not
clearly there is.

As to what is usual, well that's always an interesting question...

regards

Mark

------------------------------------------------------------------------------
_______________________________________________
QuantLib-users mailing list
[hidden email]
https://lists.sourceforge.net/lists/listinfo/quantlib-users
Reply | Threaded
Open this post in threaded view
|

Antwort: re Libor models - skew parametrization

petercaspers
ok, of course. But I we at least had

dF =  ( b F(t) * (1-b) F(0) ) ...

with b rate specific constants (as now the displacements are), the
interpretation of the volatilities would be lognormal at the money,
tractability is the same, time homogenity of volatilites would be pretty
much preserved, wouldn't it?

Of course these are modelling issues and I don't say that it has to be
changed. Just thoughts and discussion points.

Best regards
Peter



                                                                           
             Mark joshi                                                    
             <mark.joshi@gmail                                            
             .com>                                                      An
                                        [hidden email]
             31.03.2009 11:41           et                                
                                                                     Kopie
                                                                           
                                                                     Thema
                                        [Quantlib-users] re  Libor models  
                                        - skew parametrization            
                                                                           
                                                                           
                                                                           
                                                                           
                                                                           
                                                                           




Well, if you allow an arbitrary skew parametrization the SDEs are no
longer solvable even when the drift is zero.
All modelling is a compromise between tractability and realism,
displaced diffusion is just as tractable as log-normal and so is a
natural choice.

The volatilities in the model are to be interpreted as the
volatilities of the displaced log-rates. If all your displacements are
equal then there is no loss of time homogeneity. If they are not
clearly there is.

As to what is usual, well that's always an interesting question...

regards

Mark

------------------------------------------------------------------------------

_______________________________________________
QuantLib-users mailing list
[hidden email]
https://lists.sourceforge.net/lists/listinfo/quantlib-users


------------------------------------------------------------------------------------------------------------------------------------------------------
WGZ BANK AG Westdeutsche Genossenschafts-Zentralbank
Sitz: Düsseldorf, Registergericht: Amtsgericht Düsseldorf, HRB 52363
Vorstand: Werner Böhnke (Vors.), Karl-Heinz Moll, Thomas Ullrich,
Hans-Bernd Wolberg
Vorsitzender des Aufsichtsrats: Dieter Philipp

Ueber das Internet versandte E-Mails koennen unter fremdem Namen erstellt
oder inhaltlich veraendert werden. Aus diesem Grund sind unsere als E-Mail
verschickten Nachrichten grundsaetzlich keine rechtsverbindlichen
Erklaerungen. Der Inhalt dieser E-Mail samt Anlagen ist vertraulich und u.
U. rechtlich geschuetzt. Der Inhalt ist ausschließlich an einen bestimmten
Empfaenger gerichtet. Eine Weitergabe, die Herstellung von Kopien oder der
sonstige Gebrauch durch Nichtadressaten ist nicht erlaubt.

Messages sent by e-mail can be manipulated by third parties. For this
reason our e-mail messages are generally not legally binding. This
electronic message (including any attachments) contains confidential
information and may be privileged or otherwise protected from disclosure.
The information is intended to be for the use of the intended addressee
only. Please be aware that any copy, distribution or use of the contents of
this message by any other person than the intended addressee is prohibited.


------------------------------------------------------------------------------
_______________________________________________
QuantLib-users mailing list
[hidden email]
https://lists.sourceforge.net/lists/listinfo/quantlib-users